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ABSTRACT

Set similarity joins compute all pairs of similar sets from
two collections of sets. We conduct extensive experiments
on seven state-of-the-art algorithms for set similarity joins.
These algorithms adopt a filter-verification approach. Our
analysis shows that verification has not received enough at-
tention in previous works. In practice, efficient verification
inspects only a small, constant number of set elements and
is faster than some of the more sophisticated filter tech-
niques. Although we can identify three winners, we find
that most algorithms show very similar performance. The
key technique is the prefix filter, and AllPairs, the first algo-
rithm adopting this techniques is still a relevant competitor.
We repeat experiments from previous work and discuss di-
verging results. All our claims are supported by a detailed
analysis of the factors that determine the overall runtime.

1. INTRODUCTION

The set similarity join computes all pairs of similar sets
from two collections of sets. Two sets are similar if their
overlap exceeds some user-defined threshold. The efficient
computation of set similarity joins has received much at-
tention from both academia [4, 15, 19, 21] and industry [1,
3, 5], and a number of novel techniques have been devel-
oped. The fastest algorithms use a filter-verification frame-
work and leverage (some variant of) prefiz filtering [5].

The goal of this paper is to experimentally test and com-
pare the fastest algorithms for set similarity joins. We fo-
cus on main memory algorithms and include AllPairs [3],
PPJoin and PPJoin+ [21], MPJoin [15], MPJoin-PEL [9],
AdaptJoin [19], and GroupJoin [4] into our analysis. We test
on two synthetic and ten different real world datasets from
various domains. We implemented all algorithms® (C++)
and tested them against the available original implementa-
tions: our implementation is faster on almost all data points
(i.e., measurements on a combination of dataset, algorithm,

!Source code available: http://dbresearch.uni-salzburg.at/ssjoin
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and join threshold). This paper is self-contained; in addi-
tion, detailed figures about all results are available from [10].

Results. Our extensive study provides new, interesting in-
sights and sheds light on previous experimental results. In
a nutshell, we arrive to the following conclusions:

Three algorithms on the skyline. We measure the gap
to the winner on all data points: PPJoin and GroupJoin
show the best median and average behavior; GroupJoin is
the most robust algorithm (smallest gap in the worst case);
AllPairs wins on most of the data points.

Small performance differences.  With two exceptions
(AdaptJoin, PPJoin+), all algorithms show similar perfor-
mance: on average, loser and winner are within 35% from
each other; the loser is at most 4 times slower.

Verification is surprisingly fast. Although in general ver-
ification is linear in the set length, in our experiments the
number of required comparisons is a small constant (often 2
or less, 18 at most), independent of the set length.

Sophisticated filters are too slow. Due to efficient verifica-
tion, expensive filters do not pay off: we measure the slowest
runtimes for AdaptJoin (extended prefix) or PPJoin+ (suf-
fix filter), which produce the smallest candidate sets.

We repeat key experiments from four previous works [21,
15, 19, 8] and analyze the deviation from our result. We
demonstrate that inefficient verification favors expensive fil-
ter techniques, which explains the diverging results.

Related Work. Jiang et al. [8] evaluate string similar-
ity joins and dedicate a section to set similarity. Given the
context, only string data is considered. Our analysis also in-
cludes photo meta-data, click-streams, query logs, point of
sale, social media/network, and user preference data. Fur-
ther, [8] does not evaluate GroupJoin and MPJoin(-PEL),
which turn out to be relevant competitors. We repeat an
experiment of [8] and discuss diverging results.

The works that introduced the join techniques in this
test [3, 21, 15, 9, 19, 4] empirically evaluate their solutions.
Compared to our study, the scope of these experiments is
limited in terms of test data, competitors, and analysis of
the runtime results. We re-implement all algorithms and
repeat selected experiments from the original works.

We focus on main memory techniques and do not discuss
distributed set similarity algorithms, e.g., [18, 11, 6]. We
further do not include older works that pre-date the prefix
filter (e.g., PartEnum [1], MergeOpt [16]) or approximation
techniques (e.g., LSH [7], BayesLSH [17]).

To the best of our knowledge, this is the first empirical
study that (a) includes all key players in the field, (b) covers



datasets from a wide range of different applications, and (c)
provides an in-depth analysis of the runtime results.

Outline. In Section 2 we revisit set similarity joins. Sec-
tion 3 discusses relevant implementation choices, and Sec-
tion 4 defines the experimental setup. We discuss runtime
behavior in Section 5, main memory usage in Section 6, and
previous experimental results in Section 7.

2. BACKGROUND

We revisit the formal definition of set similarity joins and
the prefix filter, present the algorithmic framework used by
all tested algorithms, and shortly introduce the individual
techniques evaluated in this paper.

2.1 Set Similarity Join and Prefix Filter

Set Similarity Join. The set similarity join computes all
pairs of similar sets from two collections of sets. Two sets
are similar if their overlap exceeds a user-defined threshold.
To account for the size difference between sets, the overlap
is often normalized, and the threshold is given as Jaccard,
Dice, or Cosine similarity [2]. Formally, given two collec-
tions, R and S, a set similarity function Sim(r,s) between
two sets, and a similarity threshold ¢, the set similarity join
is defined as R M S = {(r,s) € R x S | Sim(r, s) > t}.
Prefix Filter. A key technique used by all state-of-the-art
set similarity join algorithms is the so-called prefiz filter [5],
which operates on pairs of sets, (r,s), and inspects only
small subsets of r and s to prune the pair.

The inspected subsets are called prefizes. The k-prefix of
a set is formed by the k very first elements of the set in a
given total order. With appropriate prefix lengths, two sets
can be pruned if their prefixes have no common element.
The prefix length depends on the similarity threshold and
the similarity function. For example, the prefix filter for
overlap similarity is defined as follows: Given two sets, r
and s, and an overlap threshold ¢, if |r N s| > ¢, there is at
least one common token within the |r| — ¢t 4+ l-prefix of r
and the |s| —t + 1-prefix of s. The same principle also holds
for normalized similarity measures, for example, for Jaccard
the prefix length is |r| — [¢|r|] + 1 (see [9]).

2.2 Algorithmic Framework

All tested algorithms follow a similar filter-verification ap-
proach, which is illustrated in Fig.1. The similarity join is
executed as an index nested loop join: (1) an index lookup
returns a set of pre-candidates; (2) the pre-candidates are
deduplicated and filtered; (3) the resulting candidate pairs
undergo a verification phase to generate the final result. We
discuss the layout of the pre-processed input data, the struc-
ture of the index, and each of the three join steps in detail.

Input data and prefix index. The input consists of two
collections of sets, R and S. Following previous work [8,
21], the set elements, called tokens [2], are sorted by their
frequency in the collections such that the prefixes are formed
by infrequent tokens. The tokens in each set are unique.

An inverted index is built on top of collection S consid-
ering only the prefix of each set. For each token in S, the
inverted list stores all sets in S that contain that token in
the prefix. The set entries in the inverted list are sorted by
increasing set size.
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Figure 1: Set similarity join with prefix index.

Outline of join algorithm. The probing sets, r € R, are
processed in increasing size order, and for each probing set
the following steps are performed (cf. Fig.1):

(1) Pre-candidate generation. For each token in the prefix
of r, the lookup (1a) returns an inverted list. The inverted
lists are cropped (1b) using lower and upper bounds that are
derived from the size of the probing set or the sort position
of the probing token. Each entry s; in the cropped list forms
a pre-candidate (r,s;) with the current probing set r. Pre-
candidates may contain duplicates (e.g., (g, s3) in Fig. 1).

(2) Candidate generation. The pre-candidates are dedu-
plicated and filtered. Pre-candidates that pass all filters are
candidates. During the evaluation of the filter conditions,
some algorithms remove obsolete entries from the inverted
lists, thus modifying the inverted list index.

(8) Verification. False positives are removed from the
candidate set to form the join result. The verification of a
candidate pair (r, s) accesses the sets in the input collections
and scans r and s in a merge-like fashion. Information from
previous filter steps is used to avoid redundant checks.
Self Join. In a self-join, where R = S, the result is sym-
metric, i.e., (r,s) € RX S = (s,r) € R X S. The self-join
algorithms discussed in this paper report only one of the
symmetric result pairs, and trivial pairs (r,7), are omitted.
The symmetry of the result pairs is leveraged to incremen-
tally build the index on the fly during the join. A set r € R
is indexed after probing it against the existing index, which
initially is empty. Since the sets in R are processed in in-
creasing size order, no set in the index is longer than the
current probing set. This allows shorter prefixes to be used
in the index [21].

2.3 Algorithms

We introduce the set similarity join algorithms evaluated
in this paper. Each algorithm is identified by a short
acronym that we use throughout the paper. The algorithms
mainly differ by the filters applied during pre-candidate
and candidate generation (see Table 1).



Table 1: Algorithms with their filters.

Algo- | Pre-Cand. Generation | Cand. Generation
rithm | (Lookup and Crop) (Filter Pre-candidates)
ALL | prefix+ length

PPJ | prefix+ length positional

PP+ | prefix+ length positional + suffix

MPJ | prefix + length positional 4+ removal
PEL | prefix+ length 4+ PEL positional + removal
ADP | adapt+ length

GRP | group + prefix 4 length | positional

AllPairs (ALL). ALL [3] was the first main memory al-
gorithm to use the prefix filter. The length filter is used to
crop the inverted lists. Based on the length of a probing set
r, an upper and lower bound on the length of eligible index
sets s; is computed. Assume, for example, Jaccard thresh-
old t; = 0.8 and a probing set of length |r| = 10. Due to
the definition of Jaccard similarity (J(r,s) = |rNs|/|rUs]),
only sets of size 8 < |s| < 12 can reach the threshold.
PPJoin (PPJ). PPJ [20, 21] extends ALL by applying the
positional filter to the pre-candidates. The positional filter
reasons over the matching position of tokens in the prefix.
For example, the pair (r, s) in Fig. 2 is a pre-candidate since
it passes prefix and length filter (the prefix is shaded). The
Jaccard threshold (t; = 0.8) is translated into a required
overlap (t = 9) for the given set pair. The first match in s
is on position 2, thus only 8 tokens of s are left to match a
token in r, and the pre-candidate is rejected.

Jaccard threshold t; = 0.8 = # required overlap = 9
-9

r: @72 [7[2]2]7[7]7]

s G ]
fe———8—>]

8

min(8,9) = 8 = filtered

Figure 2: Positional filter.

PPJoin+ (PP+). PP+ [20, 21] extends PPJ with the
suffix filter, which recursively partitions pre-candidate pairs
to tighten the upper bound on matching tokens. Consider
Fig.3: The tokens to the right of the prefix match g are
called suffiz. The suffix of r is partitioned into two parts
of similar size, the token at the partition border (p) is the
pivot element. A binary search in the suffix of s identifies
the position of the pivot and partitions s. Tokens in the left
partition of r can only match tokens in the left partition of
s, thus there is a most 1 match in this partition. Similar,
there are at most 3 matches in the right partition. Overall,
there can be at most 6 matches between r and s, and the
pre-candidate pair is rejected. The suffix filter is recursively
applied to the left and right partition until the pair is filtered
or a user-defined maximum recursion depth is reached.

Jaccard threshold t; = 0.8 = # required overlap = 9

|1 |3

14+ 14143 <9=filtered

Figure 3: Suffix filter.

GroupJoin (GRP). GRP [4] extends PPJ and leverages
the fact that different sets may have identical prefixes. Sets
with identical prefixes are grouped and treated like a single
set during candidate generation (group), which allows for
pruning candidates in large batches. The grouped candidate
pairs are expanded (un-grouped) during verification.

MPJoin (MPJ). MPJ [15] extends PPJ by removing obso-
lete entries from the inverted list (removal filter). An entry is
obsolete if it will be filtered by all future applications of the
positional filter. MPJ leverages the fact that the probing sets
are processed in increasing size order such that the required
overlap in the positional filter increases monotonically.

MPJoin-PEL (PEL). PEL [9] extends MPJ with the
position-enhanced length filter (PEL) to crop the inverted
lists in the index. PEL provides a tighter upper bound
than the length filter, leading to a smaller number of
pre-candidates.

AdaptJoin (ADP). ADP [19] generalizes the prefix filter.
The prefix length is increased by e tokens, and e 4+ 1 prefix
matches are required for a pre-candidate pair. The prefix
extension e is computed per probing set using a cost func-
tion. The prefix index is replaced by the adaptive prefix
index (adapt), which supports longer prefixes dynamically.

3. IMPLEMENTATION NOTES

We have re-implemented all algorithms in C++ following
the descriptions in the original papers. Some implementa-
tion choices have a relevant impact on the runtime. We
have implemented and tested different options and run all
experiments with the fastest version of each algorithm. Our
implementation choices are detailed in this section.

For some algorithms, the source code or binaries are avail-
able. Xiao et al. [21] (PPJ/PP+) provide the source code of
ALL, PPJ, and PP+ (src-xiao?); Wang et al. [19] (ADP)
provide the binary of ADP (bin-wang®); Jiang et al. [8] (ex-
perimental evaluation of string similarity joins) provide the
binaries of ALL, PPJ, PP+, and ADP (bin-jiang®). Our
implementation is faster than the available implementations
on all tested data points. An exception is bin-jiang, which
is faster for ADP on some selected data points (mostly for
very small thresholds, t; € {0.5,0.6}). However, the run-
time difference has no impact on the overall winner on these
data points. In Section 7, we repeat previous experiments
with the original implementations provided by the authors.

Input Data and Prefix Index. All tokens are numbered
without gaps and represented by their integer IDs. The
token numbering is based on token frequencies: the lower
the frequency of a token, the lower its ID. The sets of the
two input collections are stored as sorted arrays of integers.

The sets of a collection are ordered by their length. Sets
with the same length are sorted lexicographically. We inves-
tigate the influence of lexicographical sorting in Section 5.7.

In the index, the token number is an array position, and
the inverted list (possibly empty) is accessed in constant
time. A list entry for token 7 is a pair (s, ps), where s is a
set ID and ps the position of token 7 in the prefix of s. Thus,
all required data for the positional filter is locally available

Zhttp:/ /www.cse.unsw.edu.au/~weiw/project /simjoin.html
3http://www.cs.berkeley.edu/"jnwang/projects/ada pt
“http://dbgroup.cs.tsinghua.edu.cn/ligl /simjoin



during pre-candidate generation. The position is not stored
for ALL and ADP, which do not use the positional filter®.

Candidate Set. The candidates, (r,s;), are generated and
verified per probing set r. We collect all candidates s; for
a given probing set r in a dynamic array of integers. Fol-
lowing [15], we reserve space and store all temporary values
required for processing and verifying a candidate pair phys-
ically close to s; in the input collection. The temporary
values are reset during verification.

Pre-Computation of Overlap. Normalized thresholds
(e.g., Jaccard) must be translated into equivalent overlap
thresholds. The required overlap for a pair (r,s) depends
on the set sizes of r and s. Following src-xiao [21]
(ALL/PP/PP+), we precompute these values in each prob-
ing cycle: for a given probing size |r|, the required overlaps
for all eligible sets sizes |s;| are stored in an array. The
precomputed overlap is accessed multiple times for each set
si, and many sets may have the same length. Overall, we
measure speedups of up to 30% and no slowdown on any of
our datasets.

Verification. All join algorithms generate a set of candi-
dates which must be verified. To get a fair comparison, we
use the same verification routine for all competitors (Algo-
rithm 1 in the appendix). The merge-like verification loop
terminates as soon as the required threshold is met or cannot
be reached due to the current matching position [15].

In addition to the candidate pair (r,s) and the required
threshold, also the overlap up to positions p,,ps in 7, s is
passed to the verification routine. This overlap accounts for
matches in the prefix and initializes the verification step.
The value of this initial overlap depends on the filters ap-
plied during candidate generation and varies between differ-
ent algorithms.

Algorithm-specific notes. We discuss some implementa-
tion choices that are specific to the individual algorithms.

ALL. ALL does not use the positional filter. Thus, we
do not store the token position in the inverted lists, which
reduces the length of the lists by 50%.

PPJ. We follow the implementation of the original authors
(src-xiao) [21] and apply the positional filter only to the
first match in the prefix. This reduces the overhead of the
positional filter if only a small number of pre-candidates is
filtered. During pre-candidate generation, the position of
the last matching token pair is maintained, which avoids
redundant comparisons during verification [15].

PP+. As suggested by Xiao et al. [21], the suffix filter
is applied to only one copy of each duplicate pre-candidate
pair, (7, s;). We maintain a flag with each set s; in the input
collection to keep track of suffix filter applications.

The suffix filter requires the user parameter MAXDEPTH,
which controls the recursion depth. We use MAXDEPTH=2,
which was also used by the original authors [21] for Jaccard
and is the default in their implementation (src-xiao).

MPJ, PEL. MPJ deletes obsolete entries from the invert-
ed lists, but no data structure for the lists is discussed [15].
An obvious candidate is a linked list, which however shows
poor scan performance. In our implementation we use a
dynamic array and flag deleted items. We skip sequences of
deleted items by storing a negative offset in the first item
of a deleted sequence (cf. Fig.4). In our experiments, this

"Wang et al. [19] discuss position-aware pruning for search
queries only; an extension to joins (ADP) is not discussed.

data structure is up to two times faster and never slower
than linked lists. The same data structure is used for PEL.

2] se | | 89 |$13|indexed set s;
-1 13 ]-3 2 1-1] 3] 5 |posofcins;
token N/

Figure 4: Inverted lists in MPJ and PEL.

ADP. The adaptive prefix index of ADP supports different
prefix lengths. Instead of one inverted list per token, multi-
ple inverted lists (one for each prefix length) are stored in the
index. While ADP supports prefixes of arbitrary length, we
observe that the cost function (which decides on the length
of the prefix extension) rarely assumes values beyond 8. We
limit the number of prefix lengths to 8 and store the inverted
lists as an array of arrays. This design decision improves
memory usage and runtime on all data points covered in
this paper. The precision of the cost function for the prefix
extension is controlled by a user parameter, which we set to
K = 3 as suggested by the authors of ADP [19].

GRP. Sets with identical prefixes must be grouped during
candidate generation. To identify duplicate prefixes in a
single scan over the sets in the input collection, the sets must
be lexicographically ordered by their prefixes (in addition to
set sizes). We discuss the impact of sorting in Section 5.7.

Complexity of Source Code. The complexity of the im-
plementation greatly varies between the algorithms. We re-
port the lines of code (LoC) of our implementation in Ta-
ble 2. Large portions of the code are shared between the al-
gorithms: PPJ extends ALL with the positional filter; PP+,
MPJ, and PEL extend PPJ; GRP needs additional code
compared to PPJ to collapse and expand groups. With the
adaptive prefix index and the cost function, ADP has the
smallest overlap with the other algorithms.

Table 2: Lines of code for different join algorithms.
[ ALL [ PPJ [ PP+ [ MPJ [ PEL [ ADP [ GRP

LoC [ 215 | 220 | 370 | 240 | 245 [ 500 | 350

4. SETUP AND DATA SETS

Experimental Setup. We conduct our experiments on a
machine with a six-core Intel Xeon E5-2630 v2 CPU with
2.6 GHz, 256 GB of RAM, 15 MB L3 cache (shared with the
other cores), and 256 KB L2 cache (per core). We execute
one join at a time with no other load on the machine. We
compile our code with gcc -O3.

In this paper we focus on self-joins; Xiao et al. [21] dis-
cuss the transformation of nonself-joins to self-joins. Due
to space constraints, we mainly discuss results for Jaccard
normalization. All experiments were also conducted for Co-
sine and Dice with similar results; a summary is provided in
Section 5.1, for details see [10].

Data Sets. We use 10 real-world datasets from different
domains with very different characteristics (see Table 3):

AOL Query log of AOL search engine.® A set represents a
search string; a token is a keyword in the search string.

SAOL: http://www.cim.mcgill.ca/~dudek/206/Logs/AOL-user-ct-
collection



BMS-POS Point of sale data.” A set is a purchase in a
shop; a token is a product category in that purchase.

DBLP 100k random articles from DBLP bibliography.® A
set is a publication; tokens are g-grams of the concate-
nated title and author strings (¢ = 2, case insensitive).

ENRON Real e-mail data.” A set represents an e-mail; a
token is a word from the subject or the body field.

FLICKR Photo meta-data [4]. A set is a photography; a
token is a tag or a word from the title.

KOSARAK Click-stream data.!° A set represents the
user-behavior recorded on a Hungarian on-line news
portal; a token is a link clicked by the user.

LIVEJ Social media data from LiveJournal.'* A set rep-
resents a user; the tokens are user interests.

NETFLIX Social media data.!? A set represents a user; a
token is a movie rated by the user.

ORKUT Data from ORKUT social network.'* A set is a
user; a token is a group membership of the user.

SPOT Data from Spotify music streaming service.'® A set
is a user; a token is a track the user listened to.

We also generate two synthetic datasets with 100k sets
each. We draw the tokens from different distributions and
randomly assigned them to the sets until the precomputed
set size (which follows a Poisson distribution) is reached.

ZIPF Zipfian token distribution (z = 1), avg. set size 50.
UNIFORM Uniform token distribution, avg. set size 10.

We apply a single tokenization technique per dataset. Du-
plicate tokens that appear during the tokenization process
are deduplicated with a counter that is appended to each
duplicate (i.e., a unique integer from 1 to d is assigned to
each of the d copies of a token). This deduplication tech-
nique increases the number of different tokens, e.g., DBLP
has 3713 unique g-grams'#; however, due to many duplicate
g-grams per set, the deduplicated number of tokens is 6864.

The data sets have different characteristics (see Table 3).
In particular, the sets in AOL are very short with a high
number of different tokens. BMS-POS and DBLP both have
a small number of different tokens and vary in the set sizes.
ENRON, ORKUT, and NETFLIX feature long sets with
a large numbers of different tokens. Most datasets, like
FLICKR (cf. Fig.5), show a Zipf-like distribution. These
datasets contain a large number of infrequent tokens (less
than 10 occurrences), which favors the prefix filter. In con-
trast, NETFLIX has almost no tokens that occur less than
100 times, in BMS-POS only a quarter of the tokens occurs
less than 10 times.

"BMS-POS: http://www.sigkdd.org/kdd-cup-2000-online-retailer-
website-clickstream-analysis, provided by Blue Martini Software
for KDD 2000 cup [22]

SDBLP: http://www.informatik.uni-trier.de/~Ley/db (Feb. 2014)
ENRON:  http://www.cs.berkeley.edu/~jnwang/projects/adapt,
preprocessed by Wang et al. [19]

PKOSARAK: http://fimi.ua.ac.be/data

HTIVEJ, ORKUT: http:/ /socialnetworks. mpi-sws.org/data-
imc2007.html [12]

2NETFLIX: http://www.cs.uic.edu/"liub/Netflix-KDD-Cup-
2007.html, from Netflix Prize and KDD 2007 cup

13SPOT: http://dbis-twitterdata.uibk.ac.at/spotifyDataset [14]
“The large number of g-grams (¢ = 2) is due to the many
different Unicode characters in titles and author names.

Table 3: Characteristics of real world datasets.
F£sets set size # diff.
in coll. max [ avg tokens
AOL | 1.0-107 245.0 3.0 | 3.9-10°
BMS-POS | 3.2-10° 164.0 9.3 | 1657.0
DBLP | 1.0-10° 869.0 | 82.7 | 6864.0
ENRON | 2.5-10° 3162.0 | 135.2 | 1.1-10°
FLICKR | 1.2-10° 102.0 | 10.1 | 8.1-10°
LIVEJ | 3.1-10° 300.0 | 36.4 | 7.5-10°
KOSARAK | 6.1-10° | 2497.0 | 11.9 | 4.1-10*
NETFLIX | 4.8-10° | 1.8-10* | 209.5 | 1.8-10%
ORKUT | 2.7-10° 4-10* | 119.7 | 8.7-10°
SPOT | 4.4-10° | 1.2-10* | 12.8 | 7.6-10°

UNIFORM | 1.0-10° 25.0 10.0 209.0
ZIPF | 1.0-10° 84.0 | 50.0 | 1.0-10°
- [ ]
a
§ . g2 DBLP
NETFLIX
10
103
102 FLICKR
10t BMS-POS —& L
] -
- -
100 1 |||||||| 1 |||||||| 1 |||||||| _|_|_|_“|_|J_|_|_|_|_|_|_|_|_|_|_“

10° 10! 102 102 10* 10°
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Figure 5: Histogram of token frequencies.

5. RUNTIME

In this section, we measure the runtime and do an in-depth
analysis of the results. Each measurement is an average
over 5 independent runs. We measure CPU time with the
getrusage system call, which has a resolution of 4 ms.

We break down the overall join time into candidate time
and verification time. The candidate time includes pre-
candidate and candidate generation (cf. Section 2.2), which
are tightly interwoven in the implementation and result in a
candidate set. The prefix index is built incrementally during
pre-candidate generation and contributes to the candidate
time. The wverification time includes scanning the candidate
set and verifying each candidate. The join time is the sum
of candidate and verification time, and does not include the
overhead for preprocessing (i.e., loading and sorting the col-
lections, sorting the tokens by frequency).

5.1 Join Time

We measure the overall join time for all datasets on eight
thresholds in the range [0.50,0.95]. We next give a short
overview of the results and provide a detailed discussion of
the main influence factors in the remaining section.
Winners. Table 4 shows the fastest algorithm and its run-
time (in seconds) for each data point; we also list the runner-
ups that are within 10% from the fastest runtime. ALL wins
on most data points (31), followed by PPJ (24), GRP (16),



ADP (12), PEL (12), and MPJ (6). Often the winning al-
gorithms show very similar performance: there are many
runner-ups in the 10% range (and two identical runtimes
within the resolution of the measurement method). Even
the gap between the fastest and the slowest algorithm (gap
factor) is surprisingly small: we measure a gap factor of at
most 6.41; in many cases, the gap factor is much smaller
(cf. Table 5). If we remove PP+ and ADP (the slowest
algorithms) from the ranking, the gap factor is below 4.

Robustness. We analyze the robustness of the algorithms
and measure the average, median, and maximum gap factor
for each algorithm in Table 6(a). The most robust algorithm
is GRP: on average, it is only 12% slower than the winner
(including the cases when GRP wins), the gap is within 10%
in half of the cases (median) and is 47% in the worst case
(max). Also ALL and PPJ show good average and median
performance, but are up 2.16 resp. 3.10 times slower than the
winner in the worst case; the maximum gaps where observed
on synthetic data (ALL, PPJ: UNIFORM, GRP: ZIPF); on
real data, the maxima are 1.71 (ALL), 2.35 (PPJ), and 1.4
(GRP). PEL, which works best on nonself-joins [9], performs
only slightly better than MPJ in our self-join scenario.

Threshold. In Table 7 we analyze the relationship between
threshold and winning algorithm. We observe that ALL and
GRP tend to be faster on large thresholds, while PPJ and
ADP perform best on small thresholds. This behavior is ex-
pected. For large thresholds the prefix filter (and grouping
for GRP) is very effective, leading to pre-candidates with
a small percentage of false positives. Any additional filter
overhead for reducing the candidate set is hard to compen-
sate for during verification. On small thresholds, however,
filtering pre-candidates pays off. The good performance of
PEL for small thresholds is discussed in Section 5.2.

ADP, PP+. Table 8 shows the slowest algorithm and all
algorithms that are only up to 10% faster. The slowest al-
gorithm is either ADP (60 times) or PP+ (36 times) with a
clear gap to the second-slowest algorithm. PP+ applies the
suffix filter to pre-candidates; unfortunately, the suffix filter
is too slow compared to verification and never pays off. ADP
spends much time on generating a small candidate set and
cannot compensate this overhead during verification. We
analyze these effects in Sections 5.4 (PP+) and 5.5 (ADP).

Cosine, Dice. Table 6 summarizes the results for Cosine
and Dice: there is little difference w.r.t. Jaccard. This is not
surprising since all normalized thresholds are translated into
overlap thresholds between pairs of sets. All results in the
remaining paper are based on Jaccard similarity; detailed
results for Cosine and Dice are available from [10].

5.2 Candidate Time

We count the number of lookups (#lookups), pre-
candidates (#pre), and candidates (#cand), which turn
out to be key indicators for the candidate time. A lookup
returns an inverted list for a probing token. We discuss
ALL, PPJ, MPJ, and PEL. ADP, GRP, and PP+ adopt
different techniques and are treated in separate sections.

Lookups. The number of lookups is identical for ALL,
PPJ, MPJ, and PEL. In many cases, #lookups < #pre, and
the candidate time mainly depends on the number of pre-
candidates. Figure6 illustrates that #lookups has a visible
impact on the candidate time if #lookups ~ #pre. Fig.6(a)
shows #lookups and #pre for PPJ and PEL; all numbers are

Table 4: Fastest algorithms.
Threshold
0.5 | 0.6 | 0.7 [0.75]| 0.8 | 0.85 | 0.9 | 0.95

AOL | PEL | PEL | GRP | ALL | GRP | GRP | GRP | GRP
333 | 83.7 | 13.2 | 8.58 | 4.20 | 1.77 | 1.46 | 1.43
PPJ | PPJ | ALL | GRP | ALL
GRP | PPJ
BMS-POS | PPJ | PPJ | PPJ | PPJ | ALL | ALL | GRP | GRP
44.9 | 15.6 | 4.78 | 2.74 | 1.27 | 0.447| 0.170| 0.068
ADP | GRP | GRP | GRP
GRP | ADP | PPJ
ALL
DBLP | ADP | ADP | ADP | ADP | ADP | ADP | PPJ | ALL
105 | 48.5 | 19.4 | 10.8 | 5.15 | 2.08 [ 0.690| 0.116
ADP | PPJ
ENRON | PPJ | PPJ | PPJ | PEL | PEL | PEL | ALL | ALL
53.3 | 16.2 | 4.79 | 2.63 | 1.51 | 0.884| MPJ | 0.174
GRP | GRP | PEL | PPJ | PPJ | MPJ | 0.396 | MPJ
GRP | GRP | MPJ | PPJ | PEL | PEL
MPJ | MPJ | GRP | ALL | PPJ | PPJ
GRP | GRP
FLICKR | PEL | PPJ | ALL | ALL | ALL | ALL | ALL | ALL
14.4 | 5.77 | 2.73 | 2.03 | 1.21 | 0.696| 0.403| 0.243

Dataset

PPJ | PEL | PPJ | PPJ | PPJ | PPJ GRP
ALL | PEL | PEL | PEL | PEL PEL
MPJ

KOSARAK | PEL | PEL | PPJ | ALL | ALL | ALL | ALL | GRP
47.3 |1 9.43 | 1.60 | 0.909| 0.484 | 0.232| 0.140| 0.087
PPJ | PPJ | ALL | PPJ | GRP | GRP | GRP | ALL
GRP | GRP | GRP
PEL
LIVEJ | PPJ | PEL | PEL | PEL | PEL | PPJ | MPJ | ALL
345 | 88.9 | 22.1 | 12.0 | 6.52 | 3.50 | 1.88 | 1.02
PEL | PPJ | PPJ | PPJ | PPJ | GRP | ALL | MPJ
GRP | GRP | PEL | PEL | PEL
MPJ | MPJ | PPJ
ALL | GRP
PP+ | PP+
NETFLIX | ALL | ALL | ADP | ADP | ADP | ADP | PPJ | PPJ
1235 | 494 | 146 | 76.4 | 36.6 | 15.6 | 4.73 | 0.894

PPJ | ADP PPJ | GRP | ALL
GRP | PPJ GRP PEL
GRP GRP

MPJ

ORKUT | PPJ | PPJ | PPJ | GRP | GRP | MPJ | MPJ | MPJ
213 | 79.4 | 33.4 | 21.0 | 12.9 | 7.69 | 4.28 | 2.06
GRP | GRP | GRP | PPJ | PPJ | GRP | ALL | ALL
PEL | PEL | MPJ | PPJ | PEL | PEL
MPJ | PEL | PEL | GRP | PP+
ALL | PPJ | PPJ
PP+ | PP+
SPOT | ALL | ALL | ALL | ALL | ALL | ALL | ALL | ALL
0.542] 0.321] 0.198 0.166 | 0.134 | MPJ | 0.090| 0.073
PPJ | MPJ | MPJ | MPJ | MPJ | 0.110 | MPJ | MPJ
PEL | PEL | PEL | PEL | PEL | PEL | PEL | PEL
MPJ | PPJ PP+ | PP+ | PP+ | PP+ | PP+
PPJ
UNIFORM | ADP | ADP | GRP | GRP | GRP | GRP | GRP | GRP
44.5 | 24.5 | 8.99 | 4.54 | 1.80 | 0.533| 0.245| 0.055
PPJ | PPJ
ALL
ZIPF | PPJ | PPJ | PPJ | PPJ | ALL | ALL | ALL | ALL
2.41 | 0.930| 0.412| 0.286| 0.190| 0.114 | 0.065 | 0.032
ADP ALL | ALL | PPJ | PPJ | MPJ | MPJ

percentages of #pre for PPJ. Fig. 6(b) shows the respective
candidate times (percentage of PPJ candidate time).

For threshold ¢; = 0.7, #lookups < #pre (by three or-
ders of magnitude): the small number of pre-candidates of
PEL w.r.t. PPJ translates into a much faster candidate time.
For threshold t; = 0.95, #lookups ~ #pre: although PEL
is still faster in generating candidates, the large number of
lookups leads to a runtime offset, and the reduced number
of pre-candidates is less visible in the overall candidate time.

Pre-Candidates and Candidates. In Fig. 7, we analyze
the impact of pre-candidates and candidates on the run-



Table 5: Gap factor per dataset and threshold.
Threshold

Dataset | o5 | 0.6 | 07 [ 075 | 0.8 | 0.85 | 0.9 | 0.95

AOL | 3.37 | 3.57 | 3.64 | 4.39 | 5.13 | 5.75 | 6.35 | 6.41

BMS-POS| 1.70 | 1.58 | 1.52 | 1.50 | 1.58 | 1.76 | 2.35 | 4.53

DBLP | 3.69 | 3.93 | 3.561 | 3.17 | 2.79 | 2.29 | 1.65 | 2.06

ENRON | 2.70 | 2.21 | 1.72 | 1.70 | 1.94 | 2.09 | 2.41 | 2.82

FLICKR | 2.06 | 1.98 | 2.04 | 2.14 | 2.44 | 2.92 | 3.67 | 4.80

KOSARAK | 3.06 | 3.00 | 1.81 | 1.87 | 2.31 | 3.03 | 3.78 | 4.76

LIVEJ | 1.99 | 2.09 | 2.23 | 2.34 | 2.53 | 2.85 | 3.40 | 4.52

NETFLIX | 3.08 | 2.93 | 2.92 | 2.63 | 2.25 | 1.77 | 1.43 | 2.10

ORKUT | 2,53 | 1.84 | 1.92 | 2.06 | 2.17 | 2.19 | 2.41 | 3.19

SPOT | 2.22 | 2.72 | 3.19 | 3.38 | 3.63 | 3.90 | 4.38 | 5.02

UNIFORM | 2.29 | 1.74 | 1.68 | 2.07 | 2.76 | 3.19 | 3.64 | 4.45

ZIPF | 2.45 | 2.11 | 1.70 | 1.81 | 2.23 | 3.01 | 4.06 | 5.90

Table 6: Summary statistics of gap factors.
(a) Jaccard.
Algorithm
ALL | PPJ | PP+ | MPJ | PEL | ADP | GRP
average | 1.19 | 1.17 | 1.81 | 1.35 | 1.28 | 2.46 | 1.12
median | 1.11 | 1.07 | 1.64 | 1.25 | 1.14 | 2.17 | 1.10
maximum | 2.16 | 3.10 | 4.45 | 3.80 | 3.49 | 6.41 | 1.47

(b) Cosine.
Algorithm
‘ ALL | PPJ | PP+ | MPJ | PEL | ADP | GRP
average | 1.28 | 1.10 | 1.96 | 1.32 | 1.23 | 2.15 | 1.14
median | 1.22 | 1.03 | 1.72 | 1.25 | 1.10 | 1.97 | 1.11
maximum | 1.95 | 2.39 | 4.05 | 2.83 | 2.67 | 6.32 | 1.70

(c) Dice.
Algorithm
‘ALL[PPJ[PP+[MPJ[PEL[ADP[GRP
average | 1.24 | 1.11 | 1.97 | 1.33 | 1.26 | 2.04 | 1.13
median | 1.19 | 1.03 | 1.69 | 1.26 | 1.12 | 1.87 | 1.11
maximum | 2.08 | 2.50 | 4.05 | 2.95 | 2.75 | 6.28 | 1.71

Gap Factor

Table 7: Winner per threshold.

Algorithm
Thres}wld‘ ALL | PPJ | PP+ [gMPJ | PEL | ADP | GRP
0.50 2 5 0 0 3 2 0
0.60 2 5 0 0 3 2 0
0.70 2 5 0 0 1 2 2
0.75 | 4 2 0 0 2 2 2
0.80 5 0 0 0 2 2 3
0.85 5 1 0 2 1 2 2
0.90 5 2 0 3 0 0 3
0.95 6 1 0 1 0 0 4
sum | 31 21 0 6 12 12 16
Table 8: Slowest algorithms.
Threshold
Dataset

0.5 | 0.6 | 0.7 | 075 0.8 | 0.85 | 0.9 | 0.95

AOL | ADP | ADP | ADP | ADP | ADP | ADP | ADP | ADP

BMS-POS | PP+ | PP+ | PP+ | PP+ | PP+ | PP+ | ADP | ADP

DBLP | PP+ | PP+ | PP+ | PP+ | PP+ | PP+ | PP+ | ADP

ENRON | PP+ | PP+ | PP+ | ADP | ADP | ADP | ADP | ADP

FLICKR | ADP | ADP | ADP | ADP | ADP | ADP | ADP | ADP

KOSARAK | ADP | ADP | ADP | ADP | ADP | ADP | ADP | ADP

LIVEJ | ADP | ADP | ADP | ADP | ADP | ADP | ADP | ADP
PP+

NETFLIX | PP+ | PP+ | PP+ | PP+ | PP+ | PP+ | PP+ | ADP

ORKUT | PP+ | PP+ | ADP | ADP | ADP | ADP | ADP | ADP
ADP

SPOT | ADP | ADP | ADP | ADP | ADP | ADP | ADP | ADP

UNIFORM | PP+ | PP+ | PP+ | PP+ | PP+ | PP+ | PP+ | PP+

ZIPF | PP+ | PP+ | PP+ | ADP | ADP | ADP | ADP | ADP
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(a) Lookups and pre-candidates.  (b) Candidate time.

Figure 6: Effect of lookups and pre-candidates on
candidate time (NETFLIX).

time. We discuss ALL, PPJ, MPJ, and PEL, which produce
different numbers of pre-candidates; the following relation-
ship holds between the pre-candidate sets: PEL C M PJ C
PPJ = ALL. The number of candidates is always smaller
than (or equal to) the pre-candidate number, and the fol-
lowing relationship holds: PEL = MPJ = PPJ C ALL.
We pick the ENRON and the AOL datasets, which respond
very differently to (pre-)candidate filters.

ALL and PPJ process the largest number of pre-
candidates (cf. Fig.7(a)). = ALL deduplicates the pre-
candidates in a single scan of the inverted lists (by marking
duplicate sets in the input collections) and applies no
additional filter to generate candidates. Thus, ALL is very
fast at generating candidates (cf. Fig.7(b)), but compared
to PPJ, the candidate set is larger. PPJ additionally applies
the positional filter (cf. Fig. 7(c)) and must compensate for
the longer candidate time during verification. The overhead
pays off for ENRON but not for AOL, where the positional
filter has almost no effect (cf. Fig. 7(d)).

MPJ and PEL reduce the number of pre-candidates: MPJ
removes hopeless pre-candidates (inverted list entries) from
the index, PEL in addition leverages the matching position
to better crop the lists. The overhead for these filters must
be outweighed by a smaller number of pre-candidates. PEL
is very effective on ENRON and reduces #pre by 56%; as
a result, PEL outperforms PPJ in candidate (by 19 %) and
join time (by 2%); the pre-candidate reduction of MPJ is
not large enough to outperform PPJ in terms of runtime.
On AOL, MPJ and PEL reduce #pre by less than 1% and
cannot outweigh the filter overhead. We observe that the
pre-candidate filters are typically more effective on small
thresholds, e.g., PEL reduces #pre by less than 1% (20%) for
ts =0.95, but 23 % (71 %) for t; = 0.5 on AOL (ENRON).

5.3 Verification

The verification algorithm computes the overlap of two
sets in a merge-like fashion and stops early whenever possi-
ble (cf. Section 3). We show that verification is surprisingly
efficient: although it is linear in the set size in the worst
case, the average runtime is constant for most datasets.

The efficiency of verification puts pressure on filter tech-
niques that reduce the number of candidates (cf. Table 1).
These filters only pay off if they are much faster on false
positives than verification. Note that true positives must
still go through verification: any filter effort on them is lost.

The verification of a candidate pair (r, s) proceeds in two
steps: (a) decide on the start positions p,, ps in the two sets;
(b) iterate through the verification loop (cf. Algorithm 1).
The start position is right after the so-called effective prefix
in one of the set and the last matching token in the other
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Figure 7: Pre-candidates and candidates, t; = 0.8.

set. The matches in the effective prefix are computed during
candidate generation and need no extra effort during veri-
fication. The effective prefix is identical to the (extended)
prefix for ALL, PPJ, GRP, and ADP, but is shorter for the
indexed set in MPJ and for both sets in PEL. For computing
the starting positions, we need to access the last token in
the extended prefixes of r and s in the input collections.
Number of Token Comparisons. We count the number
of token comparisons for false positives, i.e., the number of
iterations in the verification loop (line 2 in Algorithm 1).
Token comparisons need to access the input collections R
and S, which are unlikely to be in the cache. The average
number of comparisons for PPJ is shown in Table 9. Note
that the number of comparisons can be zero if the loop con-
ditions hold before the loop is entered. Such a situation is
illustrated in Fig. 8: there are not enough tokens left in r to
satisfy the required overlap (p. and ps are circled).

Table 9: Avg. number of token comparisons, PPJ.

Dataset Threshold
0.5 [ 0.6 [ 0.7 [ 0.75 [ 0.8 [ 0.85 [ 0.9 [ 0.95
AOL | 1.1 1.1 1.2 1.2 1.1 1.0 1.0 1.0
BMS-POS | 0.86 | 0.84 | 0.97 | 1.0 1.1 1.1 1.1 1.0
DBLP| 1.5 | 0.85 | 0.64 | 0.57 | 0.55 | 0.54 | 0.55 | 0.89
ENRON | 0.81 1.0 1.9 2.9 4.9 11 13 18
FLICKR | 1.2 1.5 2.3 3.2 4.5 4.9 2.5 2.4
KOSARAK | 1.1 1.1 1.2 1.2 1.3 1.4 1.3 1.2
LIVEJ | 0.66 | 0.69 | 0.88 | 0.99 | 1.1 1.2 1.3 1.1
NETFLIX | 1.3 | 0.64 | 0.42 | 0.36 | 0.32 | 0.30 | 0.29 | 0.34
ORKUT | 1.0 | 0.98 | 0.93 | 0.93 | 0.91 | 0.87 | 0.82 | 0.93
SPOT | 0.82 | 0.88 | 0.92 | 0.99 | 0.99 | 1.0 1.0 1.0
UNIFORM | 1.3 1.1 1.1 1.1 1.1 1.3 1.3 1.1
ZIPF | 0.72 | 0.60 | 0.58 | 0.56 | 0.54 | 0.55 | 0.64 | 0.62

Jaccard threshold t; = 0.8 = # required token matches = 9

P la——7——
rilalele@)?]?]?]7]?7]7] .

s ) 222222 ]7]
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min(7,9) = 8 = filtered

Figure 8: Verification with zero token comparisons.

On most datasets, on average only 0.3 to 1.5 token com-
parisons are required to identify a false positive.
extremely efficient. We find larger values only for FLICKR
(up to 4.9) and ENRON (up to 18). Interestingly, the ef-
ficiency of the verification does not depend on the set size:
FLICKR has small sets (avg. size 10.1) but is expensive dur-
ing verification; NETFLIX has long sets (avg. size 209.5),
but requires less than 1 comparison on most thresholds.

This

is

We discuss the numbers for ALL, MPJ, and PEL, which
are not reported in Table 9. ALL often requires slightly less
token comparisons than PPJ, but may also require more
(e.g., on NETFLIX and ORKUT). This stems from two
competing effects: (a) ALL verifies additional candidates
that PPJ eliminates with the positional filter; these candi-
dates are easy to verify. (b) ALL does not store positional
information, thus the last prefix matching position must be
approximated by the number of matching tokens, which is
only a lower bound. MPJ, PEL: Since the effective prefix
is shorter, verification is typically more costly. In particular
for long sets (ENRON, NETFLIX, ORKUT, LIVEJ) we get
larger numbers, e.g., MPJ needs 3.9 to 16.0 and PEL needs
3.9 to 18.4 token comparisons on NETFLIX.

5.4 PP+: Suffix Filter

PP+ extends PPJ with the suffix filter. The suffix filter
access the sets in the input collections and rejects false pos-
itive pre-candidates. All true positives and possibly some
false positives are accepted. The accepted pre-candidates
go through verification. PPJ does not apply the suffix filter
and sends the input of the suffix filter directly to verification.

Unfortunately, the suffix filter is too slow compared to
verification and typically does not pay off. Fig.9 shows the
slowdown of PP+ w.r.t. the winner on all data points: PP+
never wins and cannot compete with the best algorithms.
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Figure 9: PP+ vs. competing algorithms.

We investigate the performance of the suffix filter vs. ver-
ification in Fig. 10, where we count the average number of
CPU cycles for PPJ (only verification) and PPJ+ (suffix
filter and verification).'® We analyze datasets with short
(BMS-POS), medium (LIVEJ), and long sets (NETFLIX).

On BMS-POS and LIVEJ, we observe that PPJ is faster
than PP+ in rejecting false positives during verification.
PPJ must also verify the false positives that the suffix filter
would reject, i.e., the suffix filter removes easy-to-verify can-
didates. There is almost no runtime difference for ORKUT.

For the suffix filter to pay off, it must be faster than ver-
ification on false positives. Thereby, we need to consider

5We use the benchmarking method described in [13] to ac-
quire the CPU cycles for each candidate.




BMS-POS LIVEJ

B SR—pe—

ORKUT Verification

B accept (true pos.)
[ reject (false pos.)

F/ég///ég///ég///ééé///ff///ff///flf////ff/% F///%////é////ﬁ////ﬁ{//
150 200 300 400
CPU cycles CPU cycles

Suffix filter
//// 7/ accept
L L E reject

600 900 1200
CPU cycles

Figure 10: Cost of suffix filter and verification, average CPU cycle count per candidate, t; = 0.8.

the verification time of PPJ. Figure 10 shows that the suf-
fix filter is always slower, which explains the poor overall
performance. Note that the suffix filter also spends time on
candidates that pass the filter, e.g., true positives; this time
is lost and adds to the verification time. The overhead is
significant: the suffix filter is slower on candidates that pass
the filter since it stops as soon as a candidate is rejected.

The poor performance of the suffix filter w.r.t. verification
is surprising since (in the worst case) verification is linear in
the set size and the suffix filter is constant (2*P%™) We
attribute this result to two effects: (a) on average, verifi-
cation accesses only a small, constant number of tokens, as
discussed in Section 5.3; (b) verification does a linear scan
and benefits from memory locality, while the suffix filter uses
binary search. Interestingly, longer sets are not necessarily
in favor of the suffix filter: PP+ slightly outperforms PPJ on
SPOT (avg. set size 12.8), but is much slower on ENRON,
NETFLIX, and ORKUT (avg. set size > 100).

5.5 ADP: Extended Prefix

We analyze the performance of ADP and compare it to
ALL (which ADP extends). ADP inspects an extended pre-
fix and maintains multiple inverted lists per token in the
index (cf. Sections 2.3). The non-extended prefix part is
treated like in ALL; the prefix extension requires additional
index lookups such that ADP produces at least the pre-
candidates of ALL. The extension is useful to reduce the
candidate set, which is always a subset of ALL.

In Fig.11 we show our experimental results on LIVEJ,
which represents the typical performance of ADP, and NET-
FLIX, where ADP performs particularly well. As expected,
ADP does more lookups and processes more pre-candidates
than ALL. On both datasets, ADP is very effective at reduc-
ing the candidate set, which translates into short verification
times. However, the extended prefix leads to much longer
candidate times. For LIVEJ, the time spent during can-
didate generation cannot be recovered during verification,
increasing the overall join time. In the case of NETFLIX,
the extended prefix pays off and ADP is faster than ALL.
— Some of the candidate generation time is spent to build
the index, which is more expensive for ADP: 5.8 s for LIVEJ
(ALL: 2.2s), 0.75s on NETFLIX (ALL: 0.35s).

On Zipf-like distributions, the prefix filter performs very
well and the extended prefix does not pay off; in fact, ADP
is the slowest algorithm on all thresholds for the Zipf-like
datasets AOL, FLICKR, KOSARAK, LIVEJ, and SPOT.
When there are few infrequent tokens in the dataset (BMS-
POS, DBLP, NETFLIX, cf. Fig.5), the prefix filter gener-
ates many false positives; on these datasets ADP wins on
some thresholds. On UNIFORM, ADP wins only on very
small thresholds, but is never among the slowest algorithms;
on ZIPF, ADP is the slowest algorithm for ¢; > 0.75, and

the performance gradually improves with smaller thresholds.

5.6 GRP: Dealing with Duplicate Prefixes

GRP groups sets with identical prefix during candidate
generation. During verification the groups are expanded
since identical prefixes may stem from non-identical sets.
Grouping leads to fewer lookups and pre-candidates. In the
absence of duplicate prefixes, GRP behaves like PPJ.

Figure 12(a) shows the performance of GRP vs. PPJ on
KOSARAK (no duplicate sets). GRP reduces the number
of lookups and pre-candidates, indicating the presence of
duplicate prefixes (32.3% for t; = 0.8). The candidate time
benefits from grouping, and GRP also achieves better join
time than PPJ. Larger thresholds lead to shorter prefixes
and more duplicates. On KOSARAK, GRP has the greatest
advantage over PPJ on t; = 0.95 and is slightly slower than
PPJ for t; = 0.5. This is also visible from Table 7: the
higher the threshold, the better the performance of GRP.

Verification: Although GRP and PPJ have identical can-
didate sets, GRP involves the overhead of unfolding groups,
which explains the verification times in Fig. 12(a). The un-
folding overhead is partially absorbed by better memory lo-
cality, which is the predominant effect in Figure 12(b).

In Fig12(b) we compare GRP vs. PPJ on a version of
KOSARAK with duplicates, i.e., we execute the join with-
out removing duplicate sets from the collections. The per-
centage of duplicate sets is 38.7%, the resulting number of
duplicate prefixes is 58.5%. In this setting, GRP clearly has
an edge over PPJ. Note, however, that GRP also must verify
all pairs of identical (duplicate) sets, which does not scale
for duplicates that appear frequently.

5.7 Lexicographical Sorting

The sets in the input collections are ordered by length,
and sets of the same length are lexicographically sorted by
tokens. Infrequent tokens precede frequent tokens in the
sort order. The sort order is unique, and sorting ensures
deterministic behavior of the algorithms.

We compare the join time for collections that are lexico-
graphically sorted vs. randomly shuffled. Figure 13 shows
that lexicographical sorting has a significant impact on the
runtime, and all algorithms benefit from sorting (while only
GRP explicitly leverages the sort order to detect duplicate
prefixes). We observe that sorting is more beneficial for
shorter prefixes: while on AOL (short sets) PPJ is 4.9 times
faster with sorting, the best improvement on ENRON (long
sets) is below 5%. Also high thresholds decrease the prefix
length: PPJ on DBLP benefits with 20% for ¢; = 0.95, but
only with 2% for t; = 0.7.

We identify two beneficial effects of sorting: (a) Cache
friendliness: we measure 10 times more cache misses for shuf-
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Figure 11: ADP vs. ALL: Candidate generation, verification, and join time.
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Figure 13: Runtime, ¢t; = 0.8.

fled input (PPJ, AOL, t; = 0.8)'¢. (b) Less pre-candidates:
The index is built on the fly. Sorting favors infrequent
tokens (with short inverted lists) to be indexed first, thus
subsequent lookups return fewer pre-candidates. However,
this effect is less significant: the maximum reduction of pre-
candidates in our test is 13% (ALL+PPJ, AOL, t; = 0.75).

6. MEMORY USAGE

We study the memory usage!” of all join algorithms in
Fig.14. The following structures are stored on the heap:
(a) the input collections, (b) the (extended) prefix index,
(c) the candidate set. Minor size differences between the
input collections are due to meta data that is stored with
the input sets and may vary between the algorithms. The
candidate set is reset per probing set and its size is negligible.
Thus, the main factor for memory differences is the index.

Figure 14(a) depicts the typical behavior: ALL uses the
smallest amount of memory (since it does not store posi-
tional information), MPJ and PEL use less memory than
PPJ (since obsolete entries are removed and the free posi-
tion may be reused), GRP requires some extra storage to
keep track of prefix groups, ADP must also store the prefix
extensions.

Figure 14(b) shows an interesting case in which ADP re-
quires less memory than most other algorithms: the lack of
position information (like in ALL) outweighs the overhead
for the extended prefix. Figure 14(c) shows the only data

16Cache misses counted with Linux perf tools.
"Heap memory measured with Linux memusage.
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point where GRP is the runner-up after ALL: the grouping
overhead is outweighed by the smaller index (since only one
representative per group is indexed).

7. PREVIOUS EXPERIMENTAL RESULTS

We repeat core runtime results of three major works on
set similarity joins: Xiao et al. [21] (PPJ, PP+), Ribeiro and
Hérder [15] (MPJ), and Wang et al. [19] (ADP). We further
discuss results by Jiang et al. [8], who evaluate set similarity
joins in the context of string similarity algorithms.

The overall outcome is the following. (1) We are able
to reproduce all results with the join implementations that
were used in the original papers. (2) With our own imple-
mentation, we get different runtime results and in some cases
cannot reproduce the relative performance of the competing
algorithms. (3) We identify the efficiency of the verification
routine as the main origin of the runtime differences between
the implementations. In our implementation, we use the
same (efficient) verification routine for all join algorithms.
An inefficient verification step favors algorithms that spend
more time on filtering candidates (cf. Section 5.3).

7.1 PPJoin/PPJoin+

Xiao et al. [21] present PPJ and PP+. We repeat a self
join experiment on ENRON™, which compares the runtimes
of PPJ, PP+, ALL, and LSH-95% (approximate algorithm,
not covered in this paper). Figure15(a) shows the plot of

¥We do not remove duplicate sets to reproduce [21].



the original paper [21], our results are shown in Fig. 15(b).
The absolute runtimes differ, which is expected since we use
a faster processor. In addition, in our experiment (1) PP+
is slower than the other algorithms, and (2) the relative
performance of ALL is better.

We analyze the relative performance loss of PP+. With
the original code provided by the authors (src-xiao) we are
able to reproduce their results on our hardware, as shown
in Fig. 15(c). Note that our implementation is faster on all
data points. An analysis of the original source code reveals
that the verification misses important optimization oppor-
tunities [15]. PP+ applies the suffix filter on the candidate
set produced by PPJ, thus the suffix filter only pays off if
it is faster than the final verification (cf. Section 5.4). We
attribute the poor relative performance of PP+ in our ex-
periments to our fast verification routine. This hypothesis
is supported by Fig. 15(d), where we substitute the verifica-
tion routine in the original source code with the verification
that we use in our experiments (Algorithm 1).

" AllPairs .——
Join Exx=
15 PPJoin+ mxmzEm -

Time (seconds)
Time (seconds)
>

(b) Our result.

" AllPairs ——
PPJoin EXXX
15 PPJoin+ mxzxzxa -

(a) Original plot [21].

" AllPairs =——
PPJoin EXX=
15 PPJoin+ mxzxa -

Time (seconds)
Time (seconds)

(c) Rerun original code. (d) Rerun original code with

fast verification.
Figure 15: Reproducing results of [21]: PPJ, PP+,
and ALL on ENRON (with duplicates), Jaccard.

7.2 MPJoin

Ribeiro and Héarder [15] present MPJ. We repeat a self-
join experiment on DBLP (¢-grams, ¢q € {2, 3,4}, t; = 0.75),
with MPJ, HYBRID (MPJ with suffix filter), and PP+.
The original results are shown in Fig. 16(a), Fig. 16(b) shows
our results. The absolute runtimes differ due to different
hardware and programming language (Java vs. C++).

Our results confirm the good performance of MPJ. Unlike
in the original plot, PP+ is at least as fast as HYBRID in
our experiments. A breakdown of the runtime shows that
PP+ outperforms HYBRID in generating the input for the
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O
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(a) Original Plot [15]. (b) Our result.

Figure 16: Reproducing results of [15]: MPJ,
HYBRID, and PP+ on DBLP (¢-grams), Jaccard.
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Figure 17: Reproducing results of [19]: ADP, PPJ,
and PP+ on ENRON (with duplicates), Jaccard.

suffix filter. The reason is that we precompute the overlap
per probing set (cf. Section 3), while the overlap is computed
per pre-candidate in the original code (as confirmed by the
authors of [15]). PP+ benefits more from this optimization
than HYBRID since PP+ processes more pre-candidates.

7.3 AdaptJoin

Wang et al. [19] present ADP. We repeat a self-join exper-
iment on ENRON (with duplicates, like [19]), which com-
pares the runtimes of PPJ, PP+, and ADP. Figures17(a)
and 17(b) show the original plot and our results, respec-
tively. The original plot includes preprocessing, which ex-
plains the offset w.r.t. our plot.

In our experiment, PPJ is faster than ADP. The difference
is due to the slow verification algorithm used by the origi-
nal authors. We run a similar experiment as in Section 7.1
to verify this claim. Figure18(c) shows the plot for the
original code (pre-processing offset removed), in Fig. 17(d)
we apply efficient verification. We use the following set-
ting: ADP runs with the binaries provided by the origi-
nal authors'®, the other algorithms run with the original
PPJ/PP+ code [21]. We estimate the preprocessing over-
head of the ADP binary as the runtime for ¢; = 0.99 (negli-
gible join time) and subtract this offset (55.1s) in the plot.
We cannot substitute the verification in the ADP binary;
however, ADP benefits less from efficient verification than
its competitors due to the smaller candidate set (from -
T%/t; = 0.95 to -96%/ts; = 0.6 w.r.t. PPJ).

7.4 String Similarity Join

Jiang et al. [8] evaluate set similarity joins in the context
of string similarity techniques. We repeat a self-join exper-
iment on ENRON (without duplicates, like [8]) in Fig.18.
In our experiment, PPJ consistently outperforms ADP. We
proceed as in Section 7.1. In Fig 18(c) we use the binaries
provided by the authors [8]; in Fig 18(d) we use the original
PPJ/PP+ code [21], but apply efficient verification.

http: / /www.cs.berkeley.edu/~jnwang/projects/adapt/
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8. CONCLUSIONS

We have studied seven algorithms for set similarity joins.
We could show that efficient verification plays a key role
and needs more attention. We further found that the most
effective technique is the prefix filter, first implemented in
AllPairs. Later improvements, in particular, PPJoin and
GroupJoin, outperform AllPairs on average, but the gain
is moderate. We believe that the framework of AllPairs is
maxed out and we do not expect significant impact from
future algorithms that extend this framework.
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APPENDIX

Algorithm 1: Verify(r, s, t, olap, pr, ps)

Input: r, s: sets to be verified (sorted arrays);
t: required overlap;
olap, pr, ps: overlap up to positions p,,ps in r, s
Result: true iff [rNs| > ¢, i.e., (7, s) is in the result set
mazr < |r| — pr + olap; maxs + |s| — ps + olap;
while maxr > t and maxs > t and olap < t do
if r[pr] = s[ps] then
pr < pr+1; ps < ps + 1; olap < olap + 1;
else if r[p,] < s[ps] then
L pr < pr + 1; maxr < maxr — 1;

else ps < ps + 1;maxs < mazxs — 1;

® N O Gk WN =

return olap > t;




A. RUNTIME

For reference, we add plots with all runtime results that we obtained for this paper.
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B. CANDIDATE GENERATION TIME

For reference, we add plots with all candidate generation time results that we obtained for this paper.
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C. LOOKUPS
We add plots with all lookups measured for the algorithms.
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D. PRE-CANDIDATES

We add plots with all pre-candidates measured for the algorithms.
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Figure 63: KOSARAK, Jaccard
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Figure 64: KOSARAK, no deduplication, Jaccard
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Figure 65: LIVEJ, Jaccard
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Figure 67: ORKUT, Jaccard
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Figure 68: SPOT, Jaccard

27

.5eT

le7

LGRP

LGRP |

4e6

3e6

2e6

le6

leb
9ed
8ed
Ted

4ded

MPJ
[ GRP

2e7 —

0.95

Teb
6e5 |
5ed
4e5
3ed
2eb
o
= =<
0.90 0 0.95
led
9ed
8ed
Ted
6ed
5e4
4e4
3ed
2ed
10000
0.90 0 0.95




5¢9

4e9

3e9

2¢9

1e9

0.60

.5e9 —

1e9 —

5e8 —

MPJ
RR

Figure 69: UNIFORM, Jaccard

0.70

6e6

5e6

4e6

3e6

2e6

le6

MP.J

0.75

8e8 -
Te8 -
6e8 -
5e8 -
4e8 -
3e8
2e8 —:

3e6

2e6

1e6

MPJ

0.80

Figure 70: ZIPF, Jaccard
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E. CANDIDATES

We add plots with all candidates measured for the algorithms.
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Figure 73: DBLP, Jaccard
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F. SUMMARY TABLES
F.1 Jaccard

Table 12: Slowest algorithms, Jaccard, Self-Join.

Table 10: Summary statistics of gap factors, Jac- Throshold

card, self-join. Dataset | 5 | 06 | 0.7 | 0.75 | 0.8 | 0.85 | 0.9 | 0.95
Algorithm AOL [ ADP | ADP | ADP | ADP | ADP | ADP | ADP | ADP

ALL | PPJ | PP+ | MPJ | PEL | ADP | GRP BMS-POS | PP+ | PP{ | PP{ | PP4 | PP | PP | ADP | ADP

average | 1.19 | 1.17 | 1.81 | 1.35 | 1.28 | 2.46 | 1.12 DBLP | PP+ | PP+ | PP+ | PP+ | PP+ | PP+ | PP+ | ADP
median | 1.11 | 1.07 | 1.64 | 1.25 | 1.14 | 2.17 | 1.10 ENRON | PP+ | PP+ | PP+ | ADP | ADP | ADP | ADP | ADP
maximum | 2.16 | 3.10 | 4.45 | 3.80 | 3.49 | 6.41 | 1.47 FLICKR | ADP | ADP | ADP | ADP | ADP | ADP | ADP | ADP

KOSARAK | ADP | ADP | ADP | ADP | ADP | ADP | ADP | ADP
LIVEJ | ADP | ADP | ADP | ADP | ADP | ADP | ADP | ADP

PP+
) ] NETFLIX | PP+ | PP+ | PP+ | PP+ | PPf | PP | PP+ | ADP
Table 11: Fastest algorithms, Jaccard, Self-Join. ORKUT | PP+ | PP+ | ADP | ADP | ADP | ADP | ADP | ADP
Threshold ADP
Dataset = = =
05| 06 | 07 |075| 0.8 | 0.85] 0.9 | 0.95 SPOT | ADP | ADP | ADP | ADP | ADP | ADP | ADP | ADP
AOL [ PEL | PEL | GRP | ALL | GRP | GRP | GRP | GRP UNIFORM | PP+ | PP+ | PP+ | PP+ | PP+ | PP+ | PP+ | PP+
333 | 83.7 | 13.2 | 8.58 | 4.20 | 1.77 | 1.46 | 1.43 ZIPF | PP+ | PP+ | PP+ | ADP | ADP | ADP | ADP | ADP
PPJ | PPJ | ALL | GRP | ALL
GRP | PPJ

BMS-POS | PPJ | PPJ | PPJ | PPJ | ALL | ALL | GRP | GRP
44.9 | 15.6 | 4.78 | 2.74 | 1.27 | 0.447| 0.170| 0.068
ADP | GRP | GRP | GRP
GRP | ADP | PPJ
ALL
DBLP | ADP | ADP | ADP | ADP | ADP | ADP | PPJ | ALL
105 | 48.5 | 19.4 | 10.8 | 5.15 | 2.08 [ 0.690| 0.116
ADP | PPJ
ENRON | PPJ | PPJ | PPJ | PEL | PEL | PEL | ALL | ALL
53.3 | 16.2 | 4.79 | 2.63 | 1.51 | 0.884| MPJ | 0.174
GRP | GRP | PEL | PPJ | PPJ | MPJ | 0.396 | MPJ
GRP | GRP | MPJ | PPJ | PEL | PEL

Table 13: Gap factor per dataset and threshold, Jac-

MPJ | MPJ | GRP | ALL | PPJ | PPJ card, self-join.
GRP | GRP Dataset Threshold
FLICKR | PEL | PPJ | ALL | ALL | ALL | ALL | ALL | ALL 05 | 06 | 0.7 |075| 0.8 |]0.85| 0.9 | 0.95
14.4 | 5.77 | 2.73 | 2.03 | 1.21 | 0.696| 0.403| 0.243 AOL | 3.37 | 3.57 | 3.64 | 439 | 5.13 | 5.75 | 6.35 | 6.41
PPJ | PEL | PPJ | PPJ | PPJ | PPJ GRP BMS-POS | 1.70 | 1.58 | 1.52 | 1.50 | 1.568 | 1.76 | 2.35 | 4.53
ALL | PEL | PEL | PEL | PEL PEL DBLP | 3.69 | 3.93 | 3.51 | 3.17 | 2.79 | 2.29 | 1.65 | 2.06
MPJ ENRON | 2.70 | 2.21 | 1.72 | 1.70 | 1.94 | 2.09 | 2.41 | 2.82
KOSARAK | PEL | PEL | PPJ | ALL | ALL | ALL | ALL | GRP FLICKR | 2.06 | 1.98 | 2.04 | 2.14 | 2.44 | 2.92 | 3.67 | 4.80
47.3 | 9.43 | 1.60 | 0.909 0.484 | 0.232 0.140| 0.087 KOSARAK | 3.06 | 3.00 | 1.81 | 1.87 | 2.31 | 3.03 | 3.78 | 4.76
PPJ | PPJ | ALL | PPJ | GRP | GRP | GRP | ALL LIVEJ | 1.99 | 2.09 | 2.23 | 2.34 | 2.53 | 2.85 | 3.40 | 4.52
GRP | GRP | GRP NETFLIX | 3.08 | 2.93 | 2.92 | 2.63 | 2.25 | 1.77 | 1.43 | 2.10
PEL ORKUT | 2.53 | 1.84 | 1.92 | 2.06 | 2.17 | 2.19 | 2.41 | 3.19
LIVEJ | PPJ | PEL | PEL | PEL | PEL | PPJ | MPJ [ ALL SPOT | 2.22 | 2.72 | 3.19 | 3.38 | 3.63 | 3.90 | 4.38 | 5.02
345 | 88.9 | 22.1 | 12.0 | 6.52 | 3.50 | 1.88 | 1.02 UNIFORM | 2.29 | 1.74 | 1.68 | 2.07 | 2.76 | 3.10 | 3.64 | 4.45
PEL | PPJ | PPJ | PPJ | PPJ | GRP | ALL | MPJ ZIPF | 2.45 | 2.11 | 1.70 | 1.81 | 2.23 | 3.01 | 4.06 | 5.90

GRP | GRP | PEL | PEL | PEL
MPJ | MPJ | PPJ
ALL | GRP
PP+ | PP+
NETFLIX | ALL | ALL | ADP | ADP | ADP | ADP | PPJ | PPJ
1235 | 494 | 146 | 76.4 | 36.6 | 15.6 | 4.73 | 0.894

PPJ | ADP PPJ | GRP | ALL
GRP | PPJ GRP PEL
GRP GRP

MPJ

ORKUT | PPJ | PPJ | PPJ | GRP | GRP | MPJ | MPJ | MPJ
213 | 79.4 | 33.4 | 21.0 | 12.9 | 7.69 | 4.28 | 2.06
GRP | GRP | GRP | PPJ | PPJ | GRP | ALL | ALL

PEL | PEL | MPJ | PPJ | PEL | PEL Table 14: Winner per threshold, Jaccard, self-join.
. Algorithm

MPJ | PEL iii ‘1§§§’ F};Er Threshold | s11, | pPJ | PP+ | MPJ | PEL | ADP | GRP
PP+ | PP+ 050 2 5 0 0 3 2 0
SPOT | ALL | ALL | ALL | ALL | ALL | ALL | ALL | ALL 060] 2 5 0 0 3 2 0
0.542|0.3210.198| 0.166| 0.134| MPJ | 0.090 | 0.073 070 2 5 0 0 1 2 2
PPJ | MPJ | MPJ | MPJ | MPJ | 0.110| MPJ | MPJ 075] 4 2 0 0 2 2 2
PEL | PEL | PEL | PEL | PEL | PEL | PEL | PEL 0.80| 5 0 0 0 2 2 3
MPJ | PPJ PP+ | PP+ | PP+ | PP+ | PP+ 085| 5 1 0 2 T 2 2
PPJ 090] 5 2 0 3 0 0 3
UNIFORM | ADP | ADP | GRP | GRP | GRP | GRP | GRP | GRP 0.95] 6 1 0 1 0 0 1
44.5 | 24.5 | 8.99 | 4.54 | 1.80 | 0.533] 0.245| 0.055 sum | 31 | 21 0 6 12 | 12 | 16

PPJ | PPJ

ALL

ZIPF | PPJ | PPJ | PPJ | PPJ | ALL | ALL | ALL | ALL
2.41 1 0.9300.412| 0.286| 0.190| 0.114 | 0.065 | 0.032
ADP ALL | ALL | PPJ | PPJ | MPJ | MPJ
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F.2 Dice

Table 15: Summary statistics of gap factors, Dice,

self-join.
Algorithm
ALL | PPJ | PP+ | MPJ | PEL | ADP | GRP
average | 1.24 | 1.11 | 1.97 | 1.33 | 1.26 | 2.04 | 1.13
median | 1.19 | 1.03 | 1.69 | 1.26 | 1.12 | 1.87 | 1.11
maximum | 2.08 | 2.50 | 4.05 | 2.95 | 2.75 | 6.28 | 1.71
Table 16: Fastest algorithms, Dice, Self-Join.
Dataset Threshold
0.5 0.6 0.7 0.75 0.8 0.85 0.9 0.95
AOL | PEL | PPJ | PEL | PEL | GRP | ALL | GRP | GRP
1540 | 443 111 81.0 | 23.6 | 8.60 | 2.40 | 1.43
PPJ | PEL | PPJ | PPJ | PPJ | GRP
GRP | GRP
BMS-POS | PPJ | PPJ | PPJ | PPJ | PPJ | GRP | GRP | GRP
196 | 76.2 | 27.1 | 15.6 | 7.50 | 2.78 | 0.852 0.140
GRP | GRP | PPJ | ALL
PEL | ADP | ADP
ALL
PEL
DBLP | PPJ | ADP | ADP | ADP | ADP | ADP | ADP | PPJ
349 178 | 74.5 | 47.0 | 26.7 | 12.3 | 3.79 | 0.612
PPJ GRP
ALL ADP
ENRON | PPJ | PPJ | PPJ | PPJ | PPJ | PEL | PEL | ALL
333 119 | 33.4 | 16.1 | 7.20 | 2.96 | 1.25 | MPJ
GRP | GRP | GRP | GRP | GRP | PPJ | GRP | 0.364
PEL | GRP | PPJ | PEL
MPJ | MPJ | MPJ | PPJ
ALL | GRP
FLICKR | PEL | PEL | PPJ | PPJ | PPJ | ALL | ALL | ALL
71.3 | 24.3 | 9.02 | 5.70 | 3.50 | 2.07 | 1.04 | 0.396
PPJ | PPJ | PEL | PEL | ALL | PPJ | PPJ | GRP
PEL | PEL | PEL | PEL
GRP PPJ
KOSARAK | PEL | PPJ | PEL | PEL | PPJ | ALL | ALL | GRP
384 | 82.1 | 15.3 | 9.26 | 2.85 | 0.956| 0.344| ALL
PPJ | PEL | PPJ | GRP | GRP | GRP | GRP | 0.132
GRP | PPJ PPJ
LIVEJ | PPJ | PPJ | PPJ | PEL | PEL | PEL | PEL | ALL
2439 | 775 192 | 86.9 | 35.0 | 12.8 | 5.02 | 1.72
PEL | PEL | PPJ | PPJ | PPJ | GRP | MPJ
GRP | PPJ | PEL
MPJ | PPJ
GRP
PP+
NETFLIX | PPJ | ALL | ALL | ALL | ADP | ADP | ADP | PPJ
5250 | 2375 | 870 496 217 | 86.7 | 27.2 | 4.12
GRP | PPJ | PPJ | ADP GRP
ALL | GRP | GRP | PPJ
GRP
ORKUT | PPJ | PPJ | PPJ | PPJ | PPJ | GRP | GRP | MPJ
1440 | 471 140 | 77.8 | 43.6 | 22.8 | 10.4 | 3.94
GRP | GRP | GRP | PPJ | PPJ | ALL
PEL | MPJ | PEL
MPJ | PEL | GRP
PPJ
PP+
SPOT | PPJ | ALL | ALL | ALL | ALL | ALL | ALL | ALL
1.42 | 0.708 | 0.396 | 0.316| 0.220| 0.164 | 0.120 | MPJ
ALL | PPJ | MPJ | MPJ | MPJ | MPJ | MPJ | PEL
PEL | PEL | PEL | PEL | PEL | PEL | PEL | 0.088
MPJ | PPJ | PPJ PP+ | PP+
GRP | GRP PPJ
UNIFORM | ADP | ADP | ADP | ADP | GRP | GRP | GRP | GRP
79.0 | 55.7 | 35.2 | 24.7 | 14.3 | 4.38 | 1.18 | 0.176
PPJ | ADP
PPJ
ALL
ZIPF | ADP | ADP | PPJ | PPJ | PPJ | PPJ | ALL | ALL
15.8 | 4.85 | 1.58 | 0.928| 0.544 | 0.304 | 0.160 | 0.060
PPJ | PPJ ALL | ALL | PPJ

Table 17: Slowest algorithms, Dice, Self-Join.
Threshold

Dataset

0.5

0.6

0.7

0.75

0.8

0.85

0.9 | 0.95

AOL

ADP

ADP

ADP

ADP

ADP

ADP

ADP | ADP

BMS-POS

PP+

PP+

PP+

PP+

PP+

PP+

PP+ | ADP

DBLP

PP+

PP+

PP+

PP+

PP+

PP+

PP+ | PP+

ENRON

PP+

PP+

PP+

PP+

PP+

ADP
PP+

ADP | ADP

FLICKR

ADP

ADP

ADP

ADP

ADP
PP+

ADP

ADP | ADP

KOSARAK

ADP

ADP

ADP

ADP

ADP

ADP

ADP | ADP

LIVEJ

PP+
ADP

PP+
ADP

ADP
PP+

ADP

ADP

ADP

ADP | ADP

NETFLIX

PP+

PP+

PP+

PP+

PP+

PP+

PP+ | PP+

ADP

ORKUT

PP+

PP+

PP+

PP+
ADP

ADP

ADP

ADP | ADP

SPOT

ADP

ADP

ADP

ADP

ADP

ADP

ADP | ADP

UNIFORM

PP+

PP+

PP+

PP+

PP+

PP+

PP+ | PP+

ZIPF

Table 18: Gap factor per dataset

Dice, self-
Dataset

PP+

join.

0.5

PP+

0.6

PP+

0.7

PP+

PP+

Threshold

0.75

0.8

ADP

and

0.85

ADP | ADP

threshold,

0.9 | 0.95

AOL

3.36

3.12

3.25

3.61

3.07

4.30

5.23 | 6.28

BMS-POS

1.94

1.78

1.64

1.58

1.52

1.50

1.64 | 2.66

DBLP

2.62

3.24

4.00

4.05

3.79

3.28

2.61 | 1.61

ENRON

3.34

2.99

2.51

2.22

1.88

1.61

1.93 | 2.40

FLICKR

2.33

2.05

1.95

1.94

1.87

1.99

2.38 | 3.52

KOSARAK

2.17

2.54

2.63

3.01

1.88

1.79

2.57 | 4.03

LIVEJ

2.22

2.03

1.88

1.99

2.06

2.29

2.62 | 3.50

NETFLIX

2.51

2.85

3.04

2.94

3.10

2.75

2.10 | 1.40

ORKUT

3.09

2.90

2.27

1.85

1.84

2.00

2.18 | 2.47

SPOT

1.71

2.02

2.53

2.70

3.04

3.32

3.70 | 4.23

UNIFORM

3.41

2.73

1.97

1.73

1.61

2.14

3.09 | 3.80

ZIPF

2.95

2.73

2.31

2.10

1.83

1.78

2.48 | 4.20

Table 19: Winner per threshold, Dice, self-join.

Algorithm
Threshold | xr 11 ppy | PP+ %\/IPJ PEL | ADP | GRP
050] 0 7 0 0 3 2 0
060 2 6 0 0 i 3 0
070 2 6 0 0 2 2 0
075 2 5 0 0 3 2 0
080 1 6 0 0 1 2 2
085| 4 1 0 0 2 2 3
0.90] 4 0 0 0 2 2 1
0.95| 6 2 0 3 1 0 1
sum | 21 | 33 0 3 5 | 15 | 13
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F.3 Cosine

Table 20: Summary of gap factors, Cosine, self-join.

ALL | PPJ pp+A1g1;\(/)[gt]hmpEL ADP | GRP Table 22: Slowest algorithms, Cosine, self-join.
average | 1.28 | 1.10 | 1.96 | 1.32 | 1.23 | 2.15 | 1.14 Dataset Threshold
median | 1.22 | 1.03 | 1.72 | 1.25 | 1.10 | 1.97 | 1.11 05 | 06 | 0.7 | 0.75 | 0.8 | 0.85 | 0.9 | 0.95
maximum | 1.95 | 2.39 | 4.05 | 2.83 | 2.67 | 6.32 | 1.70 AOL | ADP | ADP | ADP [ ADP | ADP | ADP | ADP | ADP
BMS-POS | PP+ | PP+ | PP+ | PP+ | PP+ | PP+ | PP+ | ADP
ADP | ADP
DBLP | PP+ | PP+ | PP+ | PP+ | PP+ | PP | PP+ | PP+
ENRON | PPt | PPt | PP+ | PP | PP+ | ADP | ADP | ADP
Table 21: Fastest algorithms, Cosine, self-join. PP+
Threshold FLICKR | ADP | ADP | ADP | ADP | ADP | ADP | ADP | ADP
Dataset 0.5 0.6 07 10751 0.8 10.85]| 0.9 | 0.95 KOSARAK | ADP | ADP | ADP | ADP | ADP | ADP | ADP | ADP
AOL | PEL | PEL | PEL | PEL | PPJ | ALL | GRP | GRP LIVEJ | ADP | ADP | ADP | ADP | ADP | ADP | ADP | ADP
1706 | 510 | 134 | 93.9 | 32.8 | 8.88 | 2.47 | 1.46 NETFLIX | PP+ | PP+ | PP+ | PP+ | PP+ | PP+ | PP+ [ PP+
PPJ | PPJ | PPJ | PPJ | PEL | GRP ADP
GRP | GRP ORKUT | PP | PP+ | PP+ | ADP | ADP | ADP | ADP | ADP
BMS-POS | PPJ | PPJ | PPJ | PPJ | PPJ | PPJ | ALL | GRP PP+
243 | 94.6 | 32.4 | 17.4 | 8.32 | 3.03 | 0.904 | 0.144 SPOT | ADP | ADP | ADP | ADP | ADP | ADP | ADP | ADP
GRP | GRP | GRP | GRP UNIFORM | PP+ | PP+ | PP+ | PP+ | PP+ | PP+ | PP+ | PP+
PEL | PEL | ADP | PPJ ZIPF | PP+ | PP+ | PP+ | PP+ | PP+ | ADP | ADP | ADP

ALL
DBLP | PPJ | PPJ | ADP | ADP | ADP | ADP | ADP | PPJ
378 196 | 83.9 | 52.0 | 29.4 | 13.4 | 4.06 | 0.624
ADP
ALL
ENRON | PPJ | PPJ | PPJ | PPJ | PEL | PEL | PEL | ALL
425 145 | 39.0 | 18.3 | 7.89 | 3.10 | 1.28 [ 0.372
GRP | GRP | GRP | GRP | PPJ | PPJ | PPJ | MPJ
PEL | GRP | GRP | MPJ | PPJ
MPJ | MPJ | MPJ | GRP | PEL
ALL | GRP
FLICKR | PEL | PEL | PEL | PPJ | PPJ | PPJ | ALL | ALL
83.2 | 28.7 | 10.2 | 6.16 | 3.66 | 2.13 | 1.09 | 0.404

Table 23: Gap factor per dataset and threshold, Co-

PPJ | PPJ | PEL | PEL | ALL | PPJ | PPJ sine, self-join.
ALL | PEL | PEL | GRP Dataset Threshold

PEL 05 | 06 | 07 |0.75| 0.8 | 0.85] 0.9 | 0.95
KOSARAK | PEL | PEL | PEL | PEL | PPJ | ALL | ALL | GRP AOL | 3.00 | 3.79 | 3.05 | 3.68 | 3.07 | 4.29 | 5.20 | 6.32
445 | 99.2 | 18.1 | 10.7 | 3.42 | 1.02 | 0.360| ALL BMS-POS | 1.09 | 1.83 | 1.66 | 1.50 | 1.53 | 1.50 | 1.58 | 2.58
GRP | PEL | PPJ | GRP | 0.136 DBLP | 2.68 | 3.24 | 3.00 | 4.05 | 3.83 | 3.22 | 2.57 | 1.63
PPJ | GRP | GRP ENRON | 3.36 | 3.02 | 2.52 | 2.20 | 1.88 | 1.68 | 2.01 | 2.43
LIVEJ | PEL | PEL | PEL | PEL | PEL | PEL | PEL | ALL FLICKR | 3.20 | 2.60 | 2.26 | 2.11 | 2.03 | 2.13 | 2.39 | 3.50
3235 | 971 | 227 | 96.8 | 38.0 | 13.6 | 5.20 | 1.76 KOSARAK | 2.78 | 3.68 | 3.50 | 3.23 | 2.21 | 1.77 | 2.51 | 3.71
PPJ | PPJ | PPJ | PPJ | PPJ | PPJ | PPJ | MPJ LIVEJ | 2.42 | 2.36 | 2.68 | 2.31 | 2.26 | 2.37 | 2.63 | 3.44
GRP | PPJ NETFLIX | 2.43 | 2.80 | 3.03 | 2.92 | 2.97 | 2.73 | 2.09 | 1.40
MPJ | PEL ORKUT | 2.85 | 2.70 | 2.19 | 1.85 | 1.86 | 2.06 | 2.23 | 2.42
PP+ SPOT | 1.85 | 1.97 | 2.36 | 2.65 | 2.90 | 3.30 | 3.61 | 4.48
NETFLIX | PPJ 'ALL | ALL | ALL | ADP T ADP | ADP | PPJ UNIFORM | 3.09 | 2.63 | 1.01 | 1.64 | 1.56 | 1.80 | 2.90 | 3.67
6687 | 2074 | 1055 | 586 | 258 | 97.1 | 29.2 | 4.24 ZIPF | 3.02 | 2.75 | 2.34 | 2.13 | 1.86 | 1.74 | 2.41 | 4.06

ALL | PPJ | PPJ | PPJ GRP

GRP GRP

ORKUT | PPJ | PPJ | PPJ | PPJ | GRP | GRP | GRP | ALL
1859 | 587 | 163 | 87.8 | 48.5 | 24.2 | 10.7 | 4.02
GRP | GRP | GRP | PPJ | PPJ | MPJ | MPJ
PEL | PEL | PPJ | GRP
MPJ | PEL | PEL
PPJ
PP+
SPOT | PPJ | ALL | ALL | ALL | ALL | ALL | ALL | ALL
1.76 | 0.868|0.476| 0.344| 0.252| 0.172| 0.124| 0.084
PEL | PEL | PPJ | PPJ | MPJ | MPJ | PEL | MPJ

GRP | PEL | GRP | PEL | PEL | MPJ | PEL Table 24: Winner per threshold, Cosine, self-join.
PPJ | MPJ | MPJ | PPJ | PP+ | PP+ | PPJ Threshold Algorithm
MPJ | GRP | PEL | GRP PPJ ALL | PPJ | PP+ | MPJ | PEL | ADP | GRP
PP+ 050] 0 7 0 0 4 1 0
UNIFORM | ADP | ADP | ADP | PPJ | PPJ | GRP | GRP | GRP 060 2 1 0 0 1 2 0
90.4 | 61.8 | 40.1 | 27.7 | 15.9 | 5.46 | 1.29 | 0.184 0.70| 2 1 0 0 4 2 0
PPJ | ADP | GRP 0.75| 2 6 0 0 3 1 0
ALL | ALL | ADP 0.80 | 1 6 0 0 2 2 1
ALL 0.85| 3 3 0 0 2 2 2
PEL 090 5 1 0 0 2 2 3
ZIPF | PPJ | ADP | PPJ | PPJ | PPJ | PPJ | ALL | ALL 090517 3 o 0 0 9 1
16.1 | 5.12 | 1.66 | 0.956| 0.556 | 0.320| PPJ | PPJ sum 23 34 0 0 5T T 12 T 10
ADP | PPJ ALL | ALL | 0.164| 0.064
PEL
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G. TOKEN FREQUENCY DISTRIBUTIONS

In this section, we provide plots of token frequency distributions.
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Figure 84: Token frequency distributions
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